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SECTION 1
INTRODUCTION

This investigation 1is concerned with the prediction of the nonlinear
response of reinforced concrete structures, including member failures and
structural collapse, to static and dynamic loads. The computer program
SINGER, the product of this investigation, provides the tool for this
prediction. This report describes the mathematical models and the solution

process which form the basis of SINGER.

1.1 BACKGROUND

Since it was desired to represent the structure by a discrete model
composed of ''gross clements, it was natural to select the finite element
method to model the structure. However, the selection of the solution
process represented a nivotal decision. Two methods were given serious
consideration: the step-by-step (STEP) approach, an equilibrium approach
in which the structure is represented by a stiffness matrix; and the
minimization (MIN) approach, an energy approach in which the structure
is characterized by a work function. In both approaches, the solution
process initiates at a point where the state of the system is known
and proceeds along discrete points of the equilibrium path (motion) of
the system,

The STEP approach has been used extensively in the analysis of non-
linear structures and is well documented [e.g., 14,17]*, The central idea
of the STEP approach is contained in Newton's method of successive ap-
proximations to a real root [15]. Tt is illustrated in Figure la,

which depicts the nonlinear equilibrium path of a one-degree-of-freedom

*
Numbers in brackets designate references
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svaren.. The nach 15 deoned B0 the equtiibrice cquation

p = 1ix) (1.1
whora p i the aputied Tood, © 00 the Dogtosirey forco (a nonlinear function
in ») . and x aenotes the displac. went trom rhe unlnaded state. The
conditirn of equilibrous corvesnos ling ro o sapecific load p ois

sp=p - f(x) -0 (1.2)

whe'o O denotes the oohalanced toad.  Tle rapgential stiffness at any

poirt of the equulibriuvrs path 1 deficed b

d.'(x‘)
k = PR 1.3)
i Jdx ( :
. d ) . th . .
H Newton's process is soplicod teo the o triil solution, X and
A = = tin) 0 (1.4)
‘n 1
the correction to X is
-1
Ax = k Sp (1.5)
n n n
s st . . .
Thus, the n + 1 trial solution i
% o+ X (1.6)

X =3
nt+l n n
This process is centinned until the nnbalane.d force Lp 1is sufficiently
small.,

Two modificatiors of this uroiess are ohtained by using che constant

stiffness coefficient

df o)
k, = S5 (1.7

during the entire iterative process (sce Figure 1b) or by combining the
constant and veriable stiffness coefficients in the solution process [17].
The extension of Newton's method to a system with multi-degrees-of-

freedom 18 known as the Newton--Raphson method. On the basis of the finite
4



p=f(x)

(a) VARIABLE STIFFNESS

(b) CONSTANT STIFFNESS

STEP PROCESS

FIG. |
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element method, the governing equations of equilibrium can be expressed

in the form [17]

p = [Blodv (1.8)
v
where
¢ = Bx (1.9)
and
§e = Béx (1.10)

In Equations 1.8, 1,9, and 1.10, p and x represent the external generalized
force and displacement vectors, respectively; o and € denote the stress and
strain vectors, respectively (the constitutive laws may be nonliuear);

B 1s th- compatibility matrix which may depend on x, in which case

B # B; 6 signifies a virtual variation; and V denotes the volume of

the system. Again the condition of equilibrium for a specific force

vector i.is

bp = p - fBlodv = 0 (1.11)
\'4

where Ap 1s the unbalanced force vector. Analogous to the Newton process,

the correction to the nth trial solution, X is
Ax_ = 'lAp (1.12)
n KT n
~nd the n + 15% trial solution is defined by

x =x + Ax (1.13)

The tangent stiffness matrix KT in Equation 1.12 is obtained by forming

a virtual variation of Equation 1.8 with respect to x; the result can be

expressed in the form

6p = Kpox . (1.14)



The unbalanced force voctor corresponding to any trial solution is
evaluaced on the basis of Fquation {.11., The solution process is
continued until the unbalanced forces ere sufficiently small. The
modifications of the N:wton process are also emploved in the Newton-
Raphson process.

The MIN approach is based on the property that the work function
[7] of the svstem assumes a relative minimum at a stable equilibrium
state. Accordingly, a desired equilibrium state is found by
minimization of the work function. Function minimization is accom-
plished via nonlinear programming techniques. The MIN approach
has been employcd successfully in the analysis of nonlinear structures
fle-g.s 2, 55 9.

The MIY process, which is discussed in more detail in section 3,
is illustrated for a two-degree-of-freedom system in Figure 2. The
work function W is represented by level curves. Function minimization
is based on a modification of Davidon's method [13]. The search for
the desired equilibrium state x corresponding to the applied load
vector ;'1nitiates at x in the direction d,. The first trial solution

1
is obtained by minimizing the function W along the direction dl' A

-l
new search direction d2 is established, and the relative minimum of

W with respect to d2 is found to be X, (the search directions are defined
by transformations of the gradients of the work function [13]). The
iterative process is continued until the components of the gradient

of the work function, which correspond to the unbalanced forces, are

sufficiently small.

It was decided that both the STEP and MIN approach provide a



W= CONSTANT

FIG. 2. MIN PROCESS
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satisfactory basis for the proposed modeling and solution process. The

final selection of the MIil approach was strongly influenced by the fol-
PP y

lowing factors:

152

In the MIN process, the search for an equilibrium state is always
based on the actual state of the system corresponding to an assumed
displacement configuration. The STEP approach is a quasi-linear
apprcach in which every trial solution is based on the stiffness
properties of the system at the beginning of the iteration (Figure 1).
Hence, in the MIN approach, decisions are always based on the actual

state of the system.

Depending on the choice of the minimization algorithm, substantial
storage space savings can be achieved with the MIN process since
the structure is represented by a scalar function. However, the
bDavidon algorithm [13] does require storage space comparable to

the STEP process.

The computation and "inversion' of the tangent stiffness matrix in
the Newton-Raphson process (Equation 1.12) requires a significant
amount of computational effort at each cycle. The alternate approach
of a constant stiffness matrix converges only for certain types of
nonlinearities [14]. Hence, at least a combination of the constant

and variable stiffness matrices is required.

PURPOSE AND SCOPE

The function of the computer program SINGER is to predict the be-

havior of plane skeletal reinforced concrete structures in their environ-

10



ments. Of particular interest i{s the nonlinear transient response including
the possibility «f element failures and structural collapse.

SINGER 1is intended to serve as a tool fcr the improvement and devel-
opment of techniques for the assessment of existing protective structures,
the design of new systems, and the development of motion environment

criteria for internal systems of protective structures.

1.3 METHODOLOGY

The prediction of the performance of the structure in its euviron-
ment is based on the response of a mathematical model of the structure tn
actions, which simulate the environment. The analysis process comprises
three principal tasks:

1. The formulations of actions, the mathematical models of the

environment.

2. The development of a mathematical model of the structure.

3. The formulation of the solution process.

The actions consist of the self-weight of the structure, distributed
and concentrated static and dynamic loads, inertia forces, and support
motions.

The structure is represented by an assemblage of discrete line ele-
ments and springs interconnected at a finite number of points. The line
elements are models of straight, prismatic, reinforced concrete members
whose longitudinal plane of symmetry corresponds to the plane of loading.
The line element is discretized via the finite element method; the inter-
nal energy, which characterizes the state of the element, is a function

of the element distortion components (three relative end-displacements

11



and one relative intern2l-displacement). Springs represent models of
joints with partial releases. A concentrated mass is assigned to each
degree of freedom of the assemblage. Energy dissipation resulting from
inelastic behavior accounts for structural damping.

The line elements admit geometric and physical nonlinearities.
Geometric nonlinearities are induced by the coupling of flexural and
axial distortions and the formulation of equilibrium for the deformed
state of the assemblage. Physical nonlinearities are caused by non-
linear constitutive (stress-strain) laws. The springs are assumed to
behave linearly.

The behavior of the element is modeled up to the limit of comtin-
uous change of state, defined as fracture (e.g.,crushing of the compres-
sion block constitutes element failure; however, minor discontinuties
such as spalling of the concrete cover are modeled).

In the linear domain, the state of the system is completely defined
by the generalized coordinates which consist of nodal displacements,
relative internal element-displacements, and relative release-displace-
ments. In the nonlinear range, the generalized coordinates must be
related to the motion (equilibrium path) of the system to define the
state of the system. The origin of the generalized coordinates cor-
responds to the unstrained state of the system, termed the initial state.

The response of the system to dynamic actions is determined at a
discrete number of points in time. The solution process is a closed
iterative process within two successive points in time, the time step.

The time function of each generalized coordinate is approximated

12



over the time step by a finite power series whose coefficlents are ex-
pressed in terms of three known initial conditions, the displacement,
velocity, and acceleration at the beginning of the time step, and one
unknown end condition, the displacement at the end of the time step.
This representation nf the time function permits one to express the in-
ertia forces at the end of the time step in terms of the unknown dis-
placements. Consequently, the state of the system at the end of the time
step can be completely defined in terms of the corresponding generalized
coordinates. For this purpose a work function is introduced, a scalar
function of the generalized coordinates, which contains implicitly all
the forces acting on the system (applied, inertia, internal). The de-
sired system configuration at the end of the time step is obtained by
minimization of the work function, which assumes a relative minimum at
the dynamic equilibrium state. The minimization process is a search
process in which a system configuration is assumed, the inertia forces
are computed and added to the applied external forces, the work function
is formulated and tested for a relative minimum. With the aid of the
information gained in this test, a new configuration is found, and the
process is repeated until the equilibrium imbalance at the end of the
time step is sufficiently small.

This solution process can also be employed to obtain the nonlinear
response to static loads. Aside from the inertia forces, the difference
between the static and dynamic analysis is conceptual. Instead of a
time step, a load increment is specified and the corresponding config-

uration is again obtained by work function minimization.

13



MATHEMATICAL MODELS

This section presents mathematical models of plane, skeletal, rein-
forced concrete structures and their environments.

The model of the structure, the system model, is a discrete model
composed of line elements (medels of reinforced concrete beam--columns)
and springs (models of partial joint releases). The line elements admit
geometric and physical nonlinearities; they can predict the behavior of
reinforced concrete members subject to flexural and axial distortions up
to failure, which is defined as the limit of continuous change of state.
The state of the element is characterized by its internal energy. The
springs are restricted to linear behavior.

The state of the system is defined by the work function, a scalar
function that contains implicitly all the forces acting on the system.
The work function is uniquely defined in terms of the generalized co-
ordinates, which must be related to the equilibrium path (motion) when
the system behaves nonlinearly (cf. section 2.2.4).

Failure criteria are formulated; they define the domain in which
the models are valid and prcovide the basis for predicting element fail-

ure and structural collapse.

2.1 ACTIONS
Actions, mathematical models of the environment, consist of the self-
weight of the structure, distributed and concentrated loads, inertia forces,

and support motions.

14



All distributed loads and self-weights are replaced by ''equivalent'
nodal forces [17]. 1In the linear range of the element, the equivalent
nodal forces caused by transverse member loads are equal in magnitude
and opposite in sense to fixed-end forces; this 1s a consequence of the
assumed shape functions (cf. section 2.2.1), which correspond to the
homogeneous solution of the differential equation of a beam in flexure.
This property does not exist in the nonlinear range where the discrete
element forms an approximate representation of the continuum,

Inertia forces are computed on the basis of lumped masses assigned
to the nodal degrees-of-freedom. The computation of the lumped masces

follows the approach described in reference 12 .

2.2 ELEMENT MODEL

The reinforced concrete beam-column is represented by a gross ele-
ment model. This means that the element forms a one-dimensional contin-
uum, which is discretized in the modeling process.

The initial state of the element is assumed co be unstrained. Defor-
mations are governed by the fundamental assumption that plane sections
remain plane and normal to the deformed reference axis. Consequently,
the state at any point of the element is defined by the state of the
reference axis. Deformations are limited by the assumption that strains
and rotations are small relative to unity. Axial and flexural deformations
are modeled explicitly; only a measure of shear distortions and their
significance is provided. Inelastic deformations are modeled up to
element failure. Structural damping is incorporated through energy dis-
sipation associated with inelastic behavior.

The beam-column effect, the coupling of axial and flexural distortions,

15



is represented by the correspondiug nonlinear term in the strain-dis-
placement relation. The member-force interactions, which are charac-
terized in the concrete literature by behavio. models, are also formu-
lated at the micro level. This is natural since the behavior model,

a macro model governing the axial load-moment-curvature relaticvus at a
section, is completely defined by the following section properties:

the strain state, the ccastituents of the section, and the corresponding
constitutive laws. The variability of the neutral axis, a characteristic
of reinforced concrete beams subjected to axial and flexural distortionms,
is modeled by admitting axial strain variations along the reference axis.
This feature is illustrated in section 2.2.1.

The state of the element is characterized by its internal energy.
Conditions of equilibrium are formulated for the assemblzage of elements,
the structural svstem. The mcdeling process, passing from the continuum
to the internal energy expressed in terms of a finite.number of distor-
tion components, is depicted schematically in Figure 3 : u and v define
the deformed reference axis; G is a 4-dimensional element distortion
vector whose components represent the relative element displacements; x
and y are the ccordinates of a point in the element (Figure 5 ); ¢ and
o denote strain and stress at a point, respectively; and U signifies the

internal energy of the element.

2.2.1 DISCRETIZATION
The reference axis of the element is depicted in Figure 4 . The
reference axis must lie in the longitudinal plane of symmetry, the plane

of bending, of the element, and all reference axes incident at a joint

16



CONTINUUM:

usu(x), v=v(x)

discretization

DISCRETE ELEMENT:

usu(x ,.'31 ’Ul;) y VBV (x );2 p:‘-3)

| compatibility

STRAIN STATE:

e-e(x,y,;)

1 constitutive law

STRESS STATE:

omc (€)

internal energy

FLFMENT STATE:
U=U{u)

Fig. 3 MODELING PROCESS
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must be concurrent. This eliminates the modeling of joint eccentricities.
Moreover, the reference axis need only be parallel to a longitudinal cdge
of the beam; its location in the longitudinal plane of symmetry is arbi-
trary (see illustrative example on page 20).

The deformation coordinate axes, the x, y-axes in Figure 4 , are
defined in section 2.3.1. The transformation of the global joint dis-
placements into the element distortion components ﬁl, GZ’ 53 is presented
in section 2.3.1. The internal listortion compcnent, ;4,18 prescribed
directly in the solution process.

The configuration of the deformed reference axis is expressed in the

form
u(@) = ¢, (B)u; + ¢,(E)y, (2.1)
v(E) = ¢,(Bu, + ¢3(e)ﬁ3 (2.2)
where
a2
¢1 =2t - ¢ (2.3)
b, =263 + 3¢2 (2.4)
¢ = L(e’ - &%) (2.5)
b, = b(-E" 4 ©) (2.6)
and
£ = x/L 2.7

For a linear element satisfying the conditions of the elementary
flexure theory, Equation 2.2 represents an exact description of the
transverse flexural deflection v in terms of the relative end-displace-

ments 52, 53. For a nonlinear element, the shape functions ¢2, ¢3

19



provide only an approximate representation of the flexural response.
The introduction of the internal distortion cowponent GA in the longi-
tudinal displacement function, Equation 2.1, permits linear variation in
the normal strain along the reference axis (see Equation 2.11). This
feature makes it possible to describe the strain state corresponding to
a linearly varying neutral axis with respect to any reference axis in
che longitudinal plane of symmetry. This property is illustrated in the
following example.

Consider the strain state

260 :
e(x,v) = =~ ——y (1 +5 (2.8)

o b L
of the beam shown in Figure 6 . The first tern on the right-hand side
of Equation 2.8 represents a constant normal strain induced by axial
compression, and the second term describes a flexural strain that varies
linearly with respect to the orthogonal reference axes, x and y; the
¥-axis coincides with the centroidal axis of the beam; h and L denote
the height and length of the beam, respectively. The neutral axis is
formed by the straight line passing through points P and Q (Figure 6 ).
Introduce a reference axis that does not coincide with the centroidal
axis; e.g., let the location of the reference axis be described by the

coordinate transformations
= h =
y=y—z, X =X (2-9)

which places the reference axis a distance h/4 below the centroidal
axis (Figure 6 ). Substitution of Equation 2.9 into Equation 2.8

yields

20
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- 1 X, v, X
clx, ¥) == (5 SN 2 o y(l + 1,) (2.10)

h
A comparison ot Equations 2.8 and 2.10 indicates that the translation of
the reference axis causes the normal strain to vary linearly along the
reference axis but does not alter the form of the flexural strain term.
Hence, 4 strain state corresponding to a linearly varying neutral
auis can he described relative toareference axis that admits linearly

varying normal strains.

r~
to

COMPATIBILITY
The point-wise deformaiions of the clement are defined by the strain-
disylacement relation (Figure 5 )

2
: _du 1 dvi2  dv
w(x,y) = et (E; y ;;5 (2.11)

where e(x,v) is the normal strain (in the x~-direction) at any point (x,y);
the x-coordinate locates planes norwral to the undeformed reference axis,
and the y-coordinate locates points in that plane; u(x) and v(x) define
the deflections of any point (x,0) on the reference axis in the x and y
directions, respectively.

The terms on the right-hand side of Equation 2.11 admit the following
geometric interpretations: The first term defines the normal strain
induced by axial deformations of the reference axis; the second term
represents the contribution of bending of the reference axis to the
normal strain [8]; i.e.,it accouats for the coupling of axial and flex-
ural distortions; and the third term represencts the elementary bending

strain.
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Equation 2.11 is valid if the strains and rotations are small
compared to unity [e.g., 3, 8, 11]. These limitations are characteristic
of classical stability investigations leading to conditions of infini-
tesimal stability (e.g.,the Euler buckling load). Egnation 2.11 can
form the basis of post-buckling investigations provided the strains
remain small and the rotations are held small by the division of the
element into sub-elements. The same procedure can be employed t. model
regions of large distortions induced by inelast!'c deformations.

With the aid of Equations 2.1 and 2.2, the normal strain can be

expressed in terms of the element distortion components:

et g e e
u o 03
A B Y (2.12)
where
7t (2.13)
6, = 4(-26 + 1) )
= 68T+ 0 (2.15)
8y = 1037 - 20) (2.16)
g eCRs D (2.17)
g = EEESD (2.18)
and
T (2.19)
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2.2.3 CONSTITUTIVE LAWS

The stresc-strain laws joverning material behavior are presented in
appendix A. They are expressed in terms of plece-wise linear functions
sucn rnat to every point in the domain (¢) corresponds a unique point in
the range (7), which is determined by the strain history.

The constitutive laws presented model the behavior of concrete (un-
contined and confimed) and reinforcing steel for monotonic and cyclic

loading. The inherent assumptions and limitations are stated.

2.2.4 INTERNAL ENERGY

Energy evaluation represents the pivotal task in the search of the
equilibrium state corresponding to a prescribed time (or load). All
measures of response (e.g.,displacements, deformations, strains, stresses,
energies) are expressed relative to the '"initial state," which is the
unstrained and unloaded configuration of the system.

Energy evaluation in the context of the solution process means the
computaticn of the total energy of the system for a given displacement
state. The internal energy evaluation proceeds as follows: On the basis
of Equation 2.11 and approprlate constitutive laws (appendix A), the
"internal-energy density," the internal energy per unit volume, is de-
termined. Integration of the internal-energy density over the volume of
the element yields the internal energy of the element. The internal
energy of the system is equal to the sum of the internal energies ol all
elements comprising the system (if the system contains release springs,
their strain energies must be added).

The principal assumption in the energy computation is that no 'load
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reversals' occur during a time step; i.e., during the entive time step,
the strain at any point in the system is either monotone increasing or
monotone decreasing,

Fnergy evaluations must be conducted numerically. In the elastic
range, numerical integration is dictated by the possible variation of
cross-sectional properties (e.g. area of compression block) over some
region of the element. For instance, an axial load and a varying
bending moment cause a varying neutral axis (cf. illustrative example
on page 20 ). 1In the inelastic range, it 1s not possible to formulate
explicitly the variation of the internal-energy density over the volume
of the element.

The numerical energy evaluation is based on the discretization of
the energy stored in the element., It involves two principal tasks:

1. The computation of the internal-energy density at a discrete

number of points in the element.

2. The integration of the internal-energy density over the volume

of the element.

The computation of the internal-energy density during the solution
process of a typical time step, from t1 to tz, is described with the

aid of Figure 7 . t, corresponds to the time at which the last equi-

1
librium state of the system has been obtained, and t2 denotes the time
at which the next equilibrium state is sought. The stress-strain

curves in Figure 7 govern the behavior of a discrete point of the

element. € and €, denote strains at tl and tz, respectively; both
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loading (fz’L ) oond unloading ('“"1) cases dre illustrated. The Inter-

1 4
nal-cnerpy density at tiwe l? is
AR TR (2.20)
whet
. 1
uk [ ode (2.21)

represents the internal-energv Jdensity at tl’ and

e . >0 if e, > ¢
gk =} Tade = L if Cg - Ci (2.22)

represents the change in the internal-energy density during the time
step tl, tz. It follows from Figure 7 that for a given value of strain
£, there corresponds a unique value of stress. Consequently, the
internal-energy density, and hence the internal energy, 1s uniquely defined
bv the strain state, which in turn is a unique function of the displace-
ment state. Hence, in the neighborhood of an equilibrium state, the
internal energy of the system is a unique function of the generalized
coordinates.

In the inelastic range, the internal-energy density consists of a
dissipative component U*, which 1s locked into the material by residual
stresses on the microscopic level, and a recoverable component U:, which

1s released by the ma. ial upon unloading (see Figure 8 ). The dis-

sipative component accounts for structural damping.
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The conputation of the internal energy of the clement {s based on
the vaussian quadrature method |17]: the councrete and steel are considered
sepatateiv. The internal-encrgy densities are evaluated at discrete
peints, the Causs points, and substituted into the Gaussian quadrature
foraula to yield the energy stored In the element. The Gauss points are
dAigtrib.ted in the longitudinal plane of the element as follows: six
points (a0 2 2 3 rule) are placed in the ton and bottom concrete covers,
wine points ¢a 4 x 3 rule) are placed in the concrete between the covers,
tnd thiee peints are placed along the centroidal axie of each steel layer.
The accuracy of the energyv computation increases with the number of
Gauss peints per element, which at present is fixed. Hence, it can only
he controlled indirectly through the division of the element into sub-
elements,

Fnergy variations govern the behavior of the mathematical model of
the structure. The accuracy of response predictions of the structure is
timized by the accuracy inherent in the energy evaluations. For this
reason internal energies induced by shear distortions are not included
in th: mathematical model; only estimates of the internal energy caused
by shear distortions and measures of the significance of these distortions
are provided. The modification of the element model to account for
shear distortions introduces uncertainties which may seriously affect the
reliahility of the model. The sources of uncertainty are identified

in the fnllowing discussion.

On the basis of the elementary heam theory including shear effects,
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the shape functions in Equation 2.2 can be modified to assume the form [12

1 3 2 "-
¢2 = 1+‘((-2:»; + 37 + &) (2.23)
and
- L g3 2 ey 2
¢3 1+Y[E £ + 2 (¢ £)] (2.24)
where
Y = l%E!' (2.25)
L°A G
S
and
A
AS = : (2.26)

y is a measure of the relative importance of shear deformations. In
particular, y is the ratio c¢f the shear defleccicon to the bending de-~
flection of a fixed-fixed beam subject to a relative end displacement.
It is important to recall that Equation 2.25 is based on the assumption
that the beam is prismatic, homogeneous, isotropic, and linearly elastic.
Accordingly, the symbols in Equations 2.25 and 2.26 are constants for a
given beam: E and G denote Young's modulus and the shear modulus cf
elasticity, respectively; A, AS, and I define the area, the effective
shear area, and the moment of inertia of the cross section, respectively;
k is a shape factor that reflects the variation of the shear stress
across the section; and L is the length of the beam.

For an inelastic reinforced concrete beam-column, the quantities in
Equation 2,25 are not constants: The moduli E and G vary pointwise over
the volume of the uncracked concrete and steel; the section properties

A, As’ and I vary with the longitudinal axis of the beam due to non-

29



uniform cracking; especially the eiffective shear area AS is difficult
to define since the shear-stress distribution over a cracked section is
not known. In essence, the problem is that Equation 2.25 is defined in
terms of macro quantities which at best provide an indirect description
of the state of an inelastic reinforced concrete beam-column. The same
difficulty is encountered in the formulation of the shear energy which

is defined by the relation

L2
St X
15 = | (
s o 2A G '2'27)
S
or
V21
U= o (2.28)
S

since the shear force V is constant in the element model.

In view of the uncertainties inherent in the prediction of shear
effects, they are not modeled explicitly; only a measure of the sig-
nificance of shear distortions is provided on the basis of Equation 2.25,
and an estimate of the internal energy induced by shear distortions is
made on the basis of Equation 2.28. 1In the evaluation of ¥quations 2.25,

28, I and G are assumed to be elastic and k is set equal to 1.20.

2.2.5 STRESS RESULTANTS
The element end-forces, which act at the reference axis (cf. Figure

9 ), are computed on the basis of the following formulas:

f = [ o(L,y)dA (2.29)
bl A
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f . == . yo(L,v)dA (2.30)

b3 A
Eo = 5 yo(0,y)dA (2.31)
A A(0)
sz = (-Lb3 -fa3 + fblUZ)/L (2.32)
e (2.33)
faZ g —be (2.34)

where fai’ f i=1, 2, 3, are the element forces at the a & b-end,

bi’
respectively; and A(0), A(L) represent the cross-sectional areas at the

a & b-end, respectively.

2.3 SYSTEM MODEL

The system model is a mathematical representation of plane, skeletal,
reinforced concrete structures. It is an assemblage of line elements
interconnected at a finite number of nodes. The elements are assumed to
be rigidly connected at the nodes unless partial or complete releases
are specified.

In the linear domain, the state of the system is completely defined
in terms of the generalized coordinates which consist of nodal displace-
ments, internal-element distortion components, and relative displacements
at releasas. In the nonlinear domain, the generalized coordinates must
he relatcd to the equilibrium path (motion) of the system to define the

state of the system (see section 2.2.4). In the "initial state," the
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generalized coordinates are zero.

There is no restriction on the magnitude of the generalized coordi-
nates per se; however, relative displacements, such as the relative dis-
placements of nodes linked by an element, are limited by the small defor-
mation requirements of the element (cf. Section 2.2.2). Violations of
these limitations can be resolved through the insertion of additional
nodes, i.e.,through the subd.vision of elements.

The following sections are concerned with compatibility and stability

of equilibrium of the system.

2.3.1 COMPATIBILITY

This section relates nodal displacements with relative element dis-
placements, called element distortion components. In the derivation of
these components, four orthogonal, right-handed, Cartesian coordinate
systems are employed; they are called global, local, joint, and deformation
systems. The deflections are positive if they take place in the positive
direction of the 1, 2~axes; the positive sense of rotations about the
3-axis is determined by the right-hand rule.

The global and local systems correspond to the coordinate systens
used in linear matrix analysis (Figure 10 ). Joint coordinates and
joint properties (e.g.,forces and displacements) are expressed in global
coordinates and denoted by capital letters. Local axes define the
orientation of the undeformed element: the l-axis coincides with the
reference axis, and the 2 & 3-axes correspond to principal axes of the
cross-section. The l~axis specifies the direction of the element; the

element in Figure 10 goes from joint i to joint j. Local vectors are
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identified by lower-case letters.
The transformation of a two-dimensional global vector Y into a

two-dimensional local vector y is defined by the matrix A:

y = AY (2.35)
where
el g
A l_s : ] (2.36)
and
c =cos &, s = sin a (2.37)

It follows from Fig. 10 that

c = AxllL, s = AXZ/L (2.38)

AX. = X.. - X, AX, = X.. -X (2.39)

and the initial element length
2 2 3
L = (AX1 + 28X, )2 (2.40)

The joint and deformation reference frames are moving frames of
reference rigidly attached to the joint at the origin of the element
(Fig. 11). 1In the initial state, the joint coordinate system coincides
with a global coordinate system originating from that joint, and the
deformation coordinate system coincides with the local coordinate
system.

Vectors expressed in joint and deformation coordinate systems
are identified by barred capital and barred lower-case letters,
respectively. Since the joint and deformation reference frames are

fixed relative to each other, corresponding vectors are transformed

by the . matrix; i.e.,
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y = AY (2.41)

where ; and Y are vectors expressed in deformation and joint coordinates,
respectively.

The global-~joint transformation is given by

where
c 8
B=[ I 1§ (2.43)
B U

= = 2.44
c coslU 5 si sinUi3 ( )

and U13 is the rotation of joint i1 about the 3-global axis.
If follows from Eqs. 2.41 & 42 that the global-deformation

transformation is defined hy

y = CY (2.45)
where

C = AB (2.46)
The derivation of the element distortion components follows

directly from Fig. 11 . The relative member-end rotation

= - 2.47
u, Uj3 013 ( )

where U,, and Ui are the rotations of the joints j and i, respectively.

i3 3
The relative member-end deflections :1, ;2 are expressed in matrix form

u = CAX* - d (2.4R)
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where

el

: - [ :1] (2.[‘9)
2
AX* = AX 4+ AU (2.:0)
X, =X AX
X = XX [ le_xﬂ ] { Axl ) (2.51)
: 42 712 2
U,,-U AU
U = [UJI_U“ I & [ AUl ] (2.52)
j2 42 2
and
= L
d = [, 1= AX (2.53)

In Eqs. 2.51-53, Xi’ X, are the joint position vectors; Ui’ U, are the

3 b
joint deflection vectors: and d defines the rigid-body motion of the
element. With the aid of Eqs. 2.46, 50, & 53, Eq. 2.48 can be

reduced to a form suitable for numerical evaluation:

u = A(DAX + BAU) (2.54)
where
2
D= B-I= [ o2 S; ] (2.55)
-8y -2512
Si9 sin(Ui3/2) (2.56)
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and ' ois the fdentity matrix. For infinitesimal displacements (i.e.,

"
5, = ”i*' ¢y = 1, S{y = n, H”A”1 = ”11 "= 0), Ta. 2,54 reduces to
u o= AEMX + A1) (2.57>
Wht_ [
0 .
Bl n’| (2.5%)
<50
i3

2.3.2  STABILITY OF REOUILTBRIUM

As described in section 3.2, the search for the equilibrium state
corresponding to a set of prescribed forces is governed by the princinle
ol least actior; i.e.,at an equilibrium state the energy function

assumes a relative minimum., Thus, if an equilibrium state is found,

it is a stahle equilibrium state.

2.4 FATLURE CRITERIA
An assemblage of elements may experience element and system
taiiure. Fracture, the limit of continuous change of state (4],

defines element failure., System failure means collapse of the

assemblage.

2.4.1 TLEMENT FAILURE
"Structure-sensitive' properties of a material, such as the
fracture strength, are essentially determined by local imperfections
in the group structure of the material: consequently, thev exhibit
'

1 considerably greater degree of variability than "structure-insensitive'

properties, such as elastic constants [4]. Freudenthal based this
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explanation of material behavior on statistical principles,

Although the literature reveals significant variations in the
fracture strength of concrete and reinforced concrete elements, the
corresponding strength criteria are seldom based on probabilistic
models; i.e.,they do not deal with these inherent uncertainties
explicitly. In conventional design, the problem of uncertain failure
strengths is usually resolved by avoiding such failures rather than
by predicting them. The underlying philosophy is to produce ductile
structures. For instance, the ultimate moment of an underreinforced
concrete beam is governed by the yield strength of the steel. Con-
sequently, the significant variability of the crushing strength of
the concrete has little affect on the ultimate flexural strength of the
reinforced concrete beam.

In this project, the complete structural response to actions
(including system failure) must be predicted. Under static actions,
system instability without element failure is possible (e.g., the
formation of a collapse mechanism) but perhaps not probable. In
the dynamic state, it may not be possible to predict the collapse
of the system until the collapse process has been initiated, in which
case element failure is probable. In any event, element failure
criteria are required.

Since fracture appears to be a probabilistic phenomenon which
is not modeled explicitly, it is monitored via lower-bound criteris.
When the possibility of fracture is detccted, the user must decide

whether to base element failure on the conservative lower-bound
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criterion or to modify the criterion to yield more probable failure
predictions (sece appendix B). This procedure requires the user to
recognize and deal with the uncertainties inherent in failure criteria.

Element failure critceria are resolved, according to the failure
mechanisms, into micro and macro criteria. Micro criteria are formulated
on the basis of explicit states at a point, such as the strain state.
Macro criteria are expressed in the form of empirical relationmns,
involving stress-resultants and element properties.

Micro criteria predict primary failures, such as crushing and
cracking of concrete and fracture of steel, induced by excessive
normal strains. The normal strains are caused by flexural and axial
distortions. Crushing of concrete may occur in the compression zone
of unconfined concrete; it may also take place in conjunction with
compression steel "buckling'" in confined concrete. Cracking may lead
to failure if it initiates In an unreinforced region of a beam in
flexure or if the entire cross-section is in tension., Fracture of
steel is mainly associated with very light reinforcement.

Macro criteria are concerned with shear-flexure failures [1]
which are precipitated by the formation of a diagonal tension crack;
the resulting failures are called diagonal-tension, shear-compression,
and shear-tension failures. The nominal average shear stress is used
as a measure of the diagonal tension strength. For unreinforced webs
the occurrence of a diagonal tension crack is regarded as element
failure. Although diagonal tension cracks tend to stabilize in short
and intermediate-length beams, the crack stabilization mechanism is

not well enough understood to warrant utilization of the reserve
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strength associated with shear-compression and shear-tension failures.
For heams with appropriate web reinforcement, the web reinjorcement
assures the stabilization of the diagonal tension crack; however,
yielding of the web reinforcement can lead again to the type of shear
failures experienced by the unreinforced beam.

A classification of all possible failure modes is presented in
appendix B. In addition, lower boundcriteria are stated, and
modifications are formulated for the selection of more probable

failure criteria.

2.4.2 3YSTEM FAILURE

System failure can be linked to instability of equilibrium.
Stability is the property of equilibrium to sustain disturbances.
This means that a stable system remains functional in the perturbed
state. Degree of stability of equilibrium i< a measure of the dis-
turbances an equilibrium state can sustain [6]. If an equilibrium
state is unstable relative to a particular disturbance, the degree
of stability is zero.

The solution process employed in this analysis converges only
to stable equilibrium states. Hence, the problem is not to ascertain
stability of equilibrium but to predict whether an equilibrium state
exists for a prescribed set of actions. The concept of degree of
stability of equilibrium serves as a basis for this prediction. The
"average curvature' of the work function at the equilibrium state is
selected as a measure of degree of stability of equilibrium. The
computation of the average curvature is based cn the values of the

curvatures of the work function at the equilibrium state in the
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direction of the generalized coordinates. The average curvature is

not likely to be zero at an unstable equilibrium state since equilibrium
is unstable 1f the minimum principal curvature {is zero. However, then
rate of change ot a load parameter with respect to the average curvature
approaches zero at an unstable equilibrium state. Hence, this rate of
change is an indicator of the imminence of instability.

The relation between dezree of stability of equilibrium and load
level is depicted in Figure 12 ; for the single-degree-of-freedom
svstem, the curvature of the work function at the equilibrium state
does approach zero at the limit load, p*. The continuous curve over
the domain 0<x<x* represents stahble equilibrium states, and the broken
curve over the domain x>x* represents unstable equilibrium states. The
decrease in degree of stability of equilibrium with increasing load is
illustrated by the work-runction curves corresponding to the equilibrium
states, X, X)) x*, The respective curvatures at the equilibrium points
decrease monotonically to zero. For a load in excess of the limit load,
€.gsP = Pg, NO equilibrium state exists, and the solution process employed
in this study cannot converge.

As the unstable equilibrium state of the system is approached,

a load increment could easily push the load beyond the limit load.
To prevert a lengthy search for an equilibrium state that does not
exist, the solution process is terminated after the deviation rrom

the last equilibrium state exceeds a prescribed -bound.
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DU LIMEPATEONS

The principal Plmitations and approxtmatfons of the mathematical
model of rhe sleletal reinforced concrete structure are summarized
below:

1. The element model is subject to the standard limitations
associated with the discretization apnroach of the finite
clement method (e.p.,internal element displacements are
expressed approximately in terms of the nodal displacements;
distributed loads are replaced by "equivalent' nodal forces).

2. Plane sections arce assumed to remain plane and normal to the
deformed referencoe axis of the reinforced concrete beam.,

This assumption appears to be reasonable up to the formation
of diagonal tension cracks of unreinforced webs [16], which
represent limits of continuous change of state of the element.

3. Normal strains and rotations are assumed to be 'small" in
the sense that their squares are negligible with respect to
unity [3, 11]: i.e., they are regarled to be infinitesimals.
These limitations are acceptable since the fracture strains
of the materials modeled in this project meet this require-
ment, and the rotations can be controlled through element
subdivision. Shear distortions are not modeled explicitly;
the indication is that a modification of the sross element
model to include shear deformations is likely to impair the
quality of the model.

4. The constitutive laws governing material behavior are described

by deterministic models. Consequently, they represent at
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best the stafristical mean of the material properties and

do not reflect the significant randomness characteristic

of some properties such as the fracture strength.

Energy computation is based on the assumption that no '"load
reversals' occur during a time (or load) increment of the
solution process. Moreover, the computation of the internal
energy is based on the evaluation of the internal energy
densities at a discrete number of points in the beam element.
This introduces another discretization error, which vanishes
only in the limit,

Flement failures precipitated by material fractures are
inherently random phenomena which can only be monitored by
lower bound criteria in a deterministic analysis. In the
event that structural collapse is strongly influenced by
element failures (as in contrast to the formation of a
"plastic'" collapse mechanism), the quality of this prediction

by deterministic methods is questionable.
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SYCTION 1

RESPONST

The response of the system model to act:ons Is sought at a discrete
number of points in time. The solution process, formulated by Melosh and
Kelley [4], 1s a closed iterative process within two successive time
points:  The state of the system is assumed to be known at the beginning
and 1s sought at the end of the time step. Thus, if the state of the
system {5 known at one point i1 time, the response determination
nruceeds l1ike a chain reaction through successive discrete points.

The solution presess comprises two fundamental concepts:

1. discretization of motion

2. work-function minimization.

The motion, time functions of the generalized system coordinates, is
discretized via the finite element method [17]; this process is analogous
to Newmark's ‘-method !10): Each displacement function is completely
defined over a time step by three initial conditions, which are known,
and one end condition, which is the desired displacement at the end of
the time step. The work function [7], a scalar function that contains
implicitly all the forces acting on the system (applied, inertia,
internal), is expressed in terms of the unknown system coordinates at
the end of the time step. The desired system configuration is obtained
by minimization of the work function, which assumes a relative minimum
at the dynamic equilibrium state.

Function minimization is based on Stewart's modification of

Davidson's method [13]. A measure of the quality of the response
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predictions is provided through error controls linked to automatic

time-step selections,

3.1 DISCRETIZATION OF MOTION
The time domain is subdivided into time segments At, and the dis-
placement functions are approximated over each subdomain by a finite

pover series of the form

xi(t) = a_ +a,.t+a t2/2 + ai3t3/6, 0<t<At (3.1)

10 11 12

where X, represents the ith generalized system coordinate, and t is the

normalized time coordinate. The constant coefficients in Eq. 3.1

are determined on the basis of the following end conditions:

Xy ™ xi(O) (3.2a)
. - 4 (0) (3.2b)
ai at *1 :

. d2 ( (

X = — x (0) 3.2¢)
ai dtz i

i <X (At) (3.24)

where xai' X denote the displacement, velocity, acceleration,

ai’ *ai
respectively, at the beginning of the time step, and X4 denotes the
displacement at the end of the time step. It follows from Egs. 3.1 and

3.2 that the displacement and acceleration functions can be expressed

over the domain [0, At] in the form

. . 2 3
xi(t) X + x_,t + x .t /2 + Bit /6 (3.3)
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;i(t) = ;ai + it (3.4)

where

- A 2 3
= 6(xbi X x .t xaiAt /2) /At (3.5)

B ai al

i

5.2  WORK-FUNCTION MINIMIZATION

Conditions of dynamic c¢quilibrium are established on the basis of
the principle of virtual work, which states that the vanishing of the
virtual work for all possible virtual displac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>